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Abstract

Black phosphorene is a novel two-dimensional material which has unique properties and wide applications. Using
first-principles calculations, we investigated the adsorption behavior of 12 different transition metals (TMs; Fe, Co, Ni,
Cu, Ru, Rh, Pd, Ag, Os, Ir, Pt, and Au) on phosphorene. Our results showed that all of the adsorption systems have a
large binding energy. The Fe-, Co-, and Au-phosphorene systems display magnetic states with magnetic moments
of 2, 1, and 0.96 μB, respectively, which means that these systems are magnetic semiconductors. Adsorption of
oxygen molecules on TM-phosphorene was also investigated. Interestingly, all the O2-(TM-phosphorene) systems,
except O2-(Pd-phosphorene), can elongate the O–O bond, which is critical to their application as catalysts in the
oxidation of CO. We also found that the adsorption of O2 molecules enables the O2-(Fe-, Ni-, Cu-, Ir-, Rh-, Ag-, and
Au-phosphorene) systems to become magnetic semiconductors, and it allows O2-(Co-phosphorene) to display
half-metallic state. Our results are expected to have important implications for phosphorene-based catalysis
and spintronics.
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Background
Phosphorene [1–3], a monolayer of phosphorus atoms ar-
ranged in a puckered honeycomb structure, has unique
properties which include a direct semiconducting nature
[4], ultrahigh mobility at room temperature [4–6], super-
ior mechanical flexibility [7], and high thermoelectric per-
formance [8–10]. These properties make phosphorene a
very suitable material for a variety of applications such as
field-effect transistors [1, 11–16], Li- and Na-ion batteries
[17–19], solar cells [20, 21], photocatalysts [22], spintro-
nics [23], and gas sensors [24–26]. However, phosphorene
is a nonmagnetic material, and some strategies must be
adopted to widen its application.
For two-dimensional (2D) materials, adsorption is usu-

ally selected as the approach to induce magnetism for
specific applications. Previously, Cao et al. [27] showed
that the electronic and magnetic properties of graphene

can be effectively modulated by adatoms of Fe, Co, Ni,
and Cu. Kaloni et al. [28] demonstrated that magnetic
moments can be induced in Ti-, V-, Cr-, Mn-, Fe-, and
Co-decorated silicene systems using first-principles cal-
culations. Ersan et al. [29] found that b-Arsenene dis-
played spin-polarized characters after adsorption of H,
B, C, P, Ge, As, and Sb atoms. Furthermore, w-Arsenene
can attain net magnetic moments with the adatoms of
H, B, N, P, Cl, Ti, As, and Sb. For black phosphorene,
Kulish et al. [30] predicted that Ag-, Au-, Ti-, V-, Cr-,
Mn-, Fe-, and Co-phosphorene are rather stable, and a
diverse range of magnetic moments can be induced in
theoretical calculations. Moreover, the properties of dif-
ferent types of charge carriers can also be tuned by
adsorbing different atoms on phosphorene. Ding and
Wang [31] used the first-principles calculations to sys-
tematically illustrate the structural, electronic, and mag-
netic properties of atoms adsorbed on phosphorene.
They noted that adatoms can introduce magnetism in
phosphorene, with P, Co, and Au adatoms inducing
stable magnetic properties. Hu and Hong [32] used the
first-principles calculations to demonstrate the magnetic
properties of metal adatoms on phosphorene; they
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showed that magnetism can be obtained in phosphorene
by adsorbing Cr, Fe, Co, or Au atoms on its surface. Fur-
thermore, they predicted that the Fe-phosphorene ad-
sorption system will be a promising dilute magnetic
semiconducting material. Thus, the adsorption of transi-
tion metals (TMs) on black phosphorene can be ex-
pected to effectively tune the magnetic properties of the
material.
Although the above investigations studied the adsorp-

tion behavior of transition metals on black phosphorene,
some issues remain unresolved. For instance, previous
studies mainly focused on the properties of 3d TMs
adsorbed on phosphorene. How will 4d and 5d TMs en-
gineer the properties of phosphorene? In addition, noble
metals absorbed on phosphorene can also be used as
single-atom catalysts. Li et al. [33] suggested that silicene
with adsorbed Au can be a high-activity catalyst with
low catalytic energy barriers for the oxidization of CO.
Can a noble metal absorbed on phosphorene also a good
candidate for the oxidization of CO? To answer these
questions, we present in this paper the results of a de-
tailed first-principles study on the structural, magnetic,
and electronic properties of 12 different types of transi-
tion metal atoms adsorbed on black phosphorene. We
selected elemental Fe, Co, and Ni, which are ferromag-
netic metals in their bulk phase; elemental Cu, which is
diamagnetic; and the noble metals Ru, Rh, Pd, Ag, Os,
Ir, Pt, and Au, which are very effective for the oxidation
of CO [19, 34–45]. We found that phosphorene forms
strong bonds with all 12 metals, and all of the
TM-phosphorene systems are rather robust. The elec-
tronic and magnetic properties of phosphorene can be
effectively tuned by the adatoms. Moreover, we also
found that most TM-phosphorene adsorption systems
are good candidates for the catalyst in the oxidation of
CO. The results of this investigation can be used for fun-
damental studies of phosphorene, and they can also
widen its potential application in many important fields.

Methods/Experimental
Our calculations were based on spin-polarized density
functional theory (DFT), and they were performed using
the Vienna Ab Initio Simulation Package (VASP) [46,
47] and the generalized gradient approximation (GGA)
of the Perdew-Burke-Ernzerhof (PBE) functional [48–
50]. The DFT-D3 method of Grimme [51] was used to
calculate the van der Waals interaction. An energy cutoff
of 400 eV with a plane-wave basis set was employed. In
the calculations, the atoms were relaxed until the total
energy converged to 1 × 10−5 eV and the residual force
on each atom was less than 0.01 eV/Å. A large supercell
(4 × 3) along the zigzag and armchair directions was
used to avoid interactions between neighboring unit
cells. The lattice constants were set to a = 13.20 Å and b

= 13.74 Å. We applied a vacuum space of 20 Å in the z
direction to minimize the interactions between adjacent
interlayers. During the optimization, a Monkhorst-Pack
[52] k-point grid of 3 × 3 × 1 was adopted, and a k-point
grid of 7 × 7 × 1 was used for the total energy
calculations.

Results and Discussion
We first explored the structural properties of pristine
phosphorene. Figure 1a shows the illustrations of the
top and side views of the crystal structure. It can be seen
that the phosphorene monolayer consists of two atomic
planes, and the unit cell of phosphorene consists of four
P atoms. The phosphorene monolayer has a tetragonal
lattice with equilibrium lattice constants a = 3.30 Å and
b = 4.58 Å. The length of the P–P bond in the horizontal
direction (l1) is 2.22 Å, while the length in the other dir-
ection (l2) is 2.26 Å. The pristine phosphorene has a dir-
ect bandgap of 0.89 eV (Fig. 1b), with both the
conduction band minimum (CBM) and the valence band
maximum (VBM) located at the Г point. The lattice con-
stant and the bandgap we obtained highly agree with the
values obtained in previous research studies [30–32, 53].
A typical adatom is always adsorbed at either one of

three positions: above a hollow site (H), on a bridge (B)
between two phosphorus atoms, and on top of a phos-
phorus atom (T). We calculated the adsorption energy
of an adatom on phosphorene to examine the stability of
the adsorption systems using the relationship:

Ead ¼ ETM þ Ephosphorene
� �

−ETM−phosphorene ð1Þ

where ETM is the energy of an isolated metal atom, Epho-
sphorene is the total energy of the pristine phosphorene

Fig. 1 a Top and side views of the crystal structure of pristine
phosphorene (4 × 3 × 1 supercell). The blue circles represent typical
positions of an impurity atom adsorbed at a hollow spot (H), on a
bridge (B) between two phosphorus atoms, and on top of a
phosphorus atom (T). b Electronic band structure and first Brillouin
zone of pristine phosphorene; the Fermi level is set to zero
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layer, and ETM-phosphorene is the total energy of the ad-
sorption system. Based on this equation, a larger adsorp-
tion energy indicates a more stable structure. We found
that all the metal atoms studied in our work prefer to
stay on the H site of phosphorene. The calculated ad-
sorption energies of metal atoms adsorbed on the H site
of phosphorene, shown in Table 1, vary from 2 to 6 eV.
The bond length of TM-phosphorene (dTM-P) was dem-
onstrated to be short, in the range of 2.11–2.43 Å. Bader
charge analysis [54–56] shows that 0.16, 0.16, 0.07, 0.17,
0.32, 0.33, and 0.16|e| are transferred from the Ru, Rh,
Pd, Os, Ir, Pt, and Au metal atoms, respectively, to phos-
phorene in the (4d-TM)-phosphorene and (5d-TM)-
phosphorene adsorption systems. All these results de-
note the formation of chemical bonds between the TM
adatom and phosphorene. In addition, these results are
close to recent studies [30–32].
As shown in Table 1, the Ni-, Cu-, Ru-, Rh-, Pd-, Ag-,

Os-, Ir-, and Pt-phosphorene systems exhibit nonmag-
netic states, while the Fe-, Co-, and Au-phosphorene
systems have the magnetic moments of 2, 1, and 0.96 μB,

Table 1 Calculated minimum bond length of TM-phosphorene
(dTM-P), adsorption energy (Ead), total magnetic moment (Mtotal),
and charge transferred from TM adatom to phosphorene for a
single TM atom adsorbed at the most stable adsorption site on
phosphorene

Adatom dTM-P (Å) Ead (eV) Mtotal (μB) C (e)

Fe 2.16 3.254 2.00 − 0.30

Co 2.12 4.158 1.00 − 0.17

Ni 2.11 4.550 0.00 − 0.12

Cu 2.21 2.517 0.00 − 0.29

Ru 2.20 5.32 0.00 + 0.16

Rh 2.20 5.32 0.00 + 0.16

Pd 2.26 3.824 0.00 + 0.07

Ag 2.43 1.465 0.00 − 0.21

Os 2.18 5.547 0.00 + 0.17

Ir 2.19 5.969 0.00 + 0.32

Pt 2.22 5.219 0.00 + 0.33

Au 2.34 1.997 0.96 + 0.16

Fig. 2 Spin densities of the a Fe-phosphorene, b Co-phosphorene, and c Au-phosphorene systems are shown in the top row; the corresponding
band structure of each system is shown at the bottom row. The black and red spheres represent P and TM atoms, respectively. In the top row, a
plot of the spin-polarized charge density with a charge density iso-surface value of 0.002 e/Å3 is superimposed on the top and side views of the
crystal structure of pristine phosphorene for each of the TM-phosphorene systems; the yellow and cyan regions correspond to the up and down
spins, respectively. In the plot of band structures (bottom row), the black and the red lines denote spin-up and spin-down channels, respectively;
the Fermi level is set to zero, and it is indicated by the gray dashed line
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respectively. The spin-polarized charge density (ρ
= ρspin-up − ρspin-down) is also shown in Fig. 2 to explore
the origin and distribution of magnetism in the magnetic
TM-phosphorene adsorption systems. The magnetic mo-
ment in each of these cases primarily originates from the
adatom, with a small magnetic moment resulting from
the nearest neighbors. Furthermore, the calculated band
structures of the Fe-, Co-, and Au-phosphorene systems
are depicted in Fig. 2. It can be seen that these systems
are all magnetic semiconductors with bandgaps of 0.38,
0.22, and 0.06 eV, respectively, which are useful for spin-
tronic applications.
Next, we studied the adsorption behavior of O2 on top of

the TM atom in the TM-phosphorene systems. Two typical
energy-lowest configurations for the adsorption of O2 on
TM-phosphorene systems (O2-(TM-phosphorene)) are
shown in Fig. 3. For O2-(Fe-phosphorene), O2-(Co-pho-
sphorene), O2-(Cu-phosphorene), O2-(Pd-phosphorene),
and O2-(Pt-phosphorene) systems, the O2 molecule is par-
allel to the zigzag direction of phosphorene (Fig. 3a), with
an O–P bond length of 1.84 Å, 1.86 Å, 2.04 Å, 2.18 Å, and
2.05 Å, respectively. For the O2-(Ni-phosphorene), O2-
(Ru-phosphorene), O2-(Rh-phosphorene), O2-(Ag-pho-
sphorene), O2-(Os-phosphorene), O2-(Ir-phosphorene),
and O2-(Au-phosphorene) systems, the molecule is along
the zigzag direction of phosphorene (Fig. 3b), at a certain
angle from the surface. Meanwhile, the two neighboring O
atoms around the TM adatom are not equivalent. The re-
sults are displayed in Table 2. The adsorption energy (Ead)
of O2 on an O2-(TM-phosphorene) system was calculated
as:

Ead ¼ ETM−phosphorene þ EO2−EO2−TM−phosphorene ð2Þ

where EO2−TM−phosphorene , ETM-phosphorene, and EO2 are
the total energies of the O2-(TM-phosphorene) system,
the TM-phosphorene system, and the O2 molecule, re-
spectively. As shown in Table 2, the adsorption energies
are 2.659, 1.850, 0.970, 0.906, 2.402, 1.548, 0.001, 0.786,
3.109, 1.980, 0.416, and 1.029 eV for the O2-(Fe-phos-
phorene), O2-(Co-phosphorene), O2-(Ni-phosphorene),
O2-(Cu-phosphorene), O2-(Ru-phosphorene), O2-(Rh-
phosphorene), O2-(Pd-phosphorene), O2-(Ag-phosphor-
ene), O2-(Os-phosphorene), O2-(Ir-phosphorene), O2-
(Pt-phosphorene), and O2-(Au-phosphorene) systems,
respectively. In all cases, the large adsorption energies

Fig. 3 Top and side views of typical adsorption sites of an O2 molecule on TM-phosphorene. The black, pink, and yellow spheres represent P, TM,
and O atoms, respectively

Table 2 Parameters of O2-(TM-phosphorene) adsorption systems:
adsorption energy, charge transferred (C) from TM-phosphorene
to the O2 molecule, and calculated bond lengths of O–O
and O–TM

Dopant Ead
(eV)

C (e) Bond length (Å)

(dO-O) (dO1-TM) (dO2-TM)

Fe 2.659 − 0.68 1.38 1.84 1.84

Co 1.850 − 0.50 1.36 1.86 1.86

Ni 0.970 − 0.42 1.32 2.14 1.90

Cu 0.906 − 0.52 1.35 2.04 2.04

Ru 2.402 − 0.46 1.40 1.91 2.08

Rh 1.548 − 0.24 1.34 2.07 2.03

Pd 0.001 − 0.24 1.32 2.18 2.18

Ag 0.786 − 0.37 1.30 2.19 2.98

Os 3.109 − 0.53 1.46 2.04 1.92

Ir 1.980 − 0.25 1.39 2.00 2.06

Pt 0.416 − 0.19 1.40 2.05 2.05

Au 1.029 − 0.09 1.32 2.12 2.93
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except for that of the O2-(Pd-phosphorene) system indi-
cate that O2 is chemisorbed.
It is fairly recognized that the elongation of the O–O

bond is crucial for both Langmuir-Hinshelwood and
Eley-Rideal mechanisms of a catalyst in the oxidation of
CO [57]. Generally speaking, the longer the O–O bond
length, the easier the catalyst reaction. The O–O and
TM–O bond lengths in each system are also shown in
Table 2. Obviously, the O–O bond increases from
1.23 Å for the pristine O2 molecule to 1.38, 1.36, 1.32,
1.35, 1.40, 1.34, 1.32, 1.30, 1.46, 1.39, 1.40, and 1.32 Å,
respectively, for the adsorbed molecule, possibly because
O2 is an electron acceptor. Furthermore, the bond length
of TM–O in most O2-(TM-phosphorene) systems is short
owing to the interaction between O2 and the TM atoms.
This bond length varies from 1.84 to 2.19 Å and results in
the formation of chemical bonds. In particular, the O–O
bond is elongated to 1.40 Å, the highest value among the
systems, in the adsorbed O2 molecule on the Pt-phosphor-
ene system. Thus, the Pt-phosphorene system is quite

suitable as a catalyst for the oxidation of CO because it
probably has the high catalytic ability.
In order to obtain more insight into the underlying

mechanism of the high activity of these systems, we se-
lected O2-(Pt-phosphorene) as an example and investi-
gated its local density of states (LDOS). Figure 4a shows
the LDOS projected onto d orbitals of Pt in the
Pt-phosphorene system, d orbitals of Pt in the O2-(Pt-pho-
sphorene) system, the O–O bond in the O2-(Pt-phosphor-
ene) system, and the gas phase O2. In the upper panel of
Fig. 4a, one peak can be seen at EF − 0.6 eV, which origi-
nates from the partially occupied d orbital of Pt in the
Pt-phosphorene system. These states should be respon-
sible for the high activity of the Pt-phosphorene system.
After the adsorption of an O2 molecule, the LDOS pro-
jected onto d orbitals of Pt below the Fermi level is down-
shifted after the adsorption of the O2 molecule owing to
the charge transfer, and the states above the Fermi level is
also substantially increased. Meanwhile, the LDOS pro-
jected onto the adsorbed O2 molecule indicates that the
O2 2π* orbitals (lowest unoccupied molecular orbital,
LUMO) are becoming partially occupied, which has
downshifted from its gas value of EF + 2 eV to EF − 0.1 eV.
For clarification, the charge density difference of the
O2-(Pt-phosphorene) system is also presented.
The charge density difference is defined as follows:

Δρ ¼ ρT−ρmolecule−ρabsorbed ð3Þ

where ρT, ρmolecule, and ρabsorbed are the total charges on the
O2-(Pt-phosphorene) system, O2 molecule, and the Pt-
phosphorene system, respectively. As shown in Fig. 4b, the
large yellow region localized on the O2 molecule indicates
that there is a significant electron transfer from Pt-
phosphorene to O2, which also indicates the strong orbital
hybridization between O2 and the Pt-phosphorene system.

Fig. 4 a Local density of states (LDOS) of Pt and O2 molecules in Pt-phosphorene and O2-Pt-phosphorene systems and gas phase O2, respectively. b
Charge density difference in the O2-(Pt-phosphorene) system; the yellow region (i.e., + 0.002 e/Å3) and the cyan region (i.e., − 0.002 e/Å3) correspond
to the increase and the loss, respectively, of the electron density

Table 3 Calculated total magnetic moment (Mtotal) of O2-(TM-
phosphorene) systems. The magnetic moments of impurity
atoms (MTM) and an oxygen molecule (MO2 ) are also shown for
comparison

Dopant Mtotal (μB) MTM MO2

Fe 2.00 1.43 0.51

Co 1.00 0.47 0.44

Ni 2.00 0.49 1.33

Cu 1.00 0.02 1.09

Rh 1.00 0.18 0.76

Ag 1.14 − 0.01 1.33

Ir 1.00 0.27 0.49

Au 1.00 0.00 1.02
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Fig. 5 (See legend on next page.)
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According to the Bader charge analysis [54–56], 0.19|e| is
transferred from the Pt-phosphorene system to the O2 mol-
ecule. Therefore, the large charge transfer fills the anti-
bonding states of the O2 molecule and significantly
weakens the O–O bond. Similarly, the underlying mechan-
ism of the high activity of other systems can also be under-
stood by the charge transfer between the O2 molecule and
the TM-phosphorene system. Indeed, Bader charge analysis
[54–56] showed that charges of − 0.68, − 0.50, − 0.42, −
0.52, − 0.46, − 0.24, − 0.24, − 0.37, − 0.53, − 0.25, − 0.19, and
− 0.09|e| are transferred from TM-phosphorene to the oxy-
gen molecule in the O2-(Fe-phosphorene), O2-(Co-phos-
phorene), O2-(Ni-phosphorene), O2-(Cu-phosphorene),
O2-(Ru-phosphorene), O2-(Rh-phosphorene), O2-(Pd-phos-
phorene), O2-(Ag-phosphorene), O2-(Os-phosphorene),
O2-(Ir-phosphorene), O2-(Pt-phosphorene), and O2-(Au-
phosphorene) systems, respectively.
Finally, we studied the magnetic properties of

O2-(TM-phosphorene) systems. The magnetic moments
of the O2-(TM-phosphorene) systems are shown in
Table 3. The O2-(Ni-phosphorene), O2-(Cu-phosphor-
ene), O2-(Rh-phosphorene), O2-(Ag-phosphorene), and
O2-(Ir-phosphorene) systems have magnetic moments of
2.00, 1.00, 1.00, 1.14, and 1.00 μB, respectively, which all
result from the adsorption of a paramagnetic O2 mol-
ecule. The spin-polarized charge density of these
O2-(TM-phosphorene) systems is displayed in Fig. 5. For
the O2-(Fe-phosphorene) and O2-(Co-phosphorene) sys-
tems, the magnetic moment is believed to mainly arise
from the transition metal atom and the O2 molecule. On
the contrary, for the O2-(Ni-phosphorene), O2-(Cu-pho-
sphorene), O2-(Rh-phosphorene), O2-(Ag-phosphorene),
O2-(Ir-phosphorene), and O2-(Au-phosphorene) sys-
tems, the magnetic moment mainly comes from the O2

molecule. These hypotheses are consistent with the re-
sults displayed in Table 3. To better comprehend how
the adsorption of a gas molecule affects the electronic
structure of the O2-(TM-phosphorene) system, the elec-
tronic band structures of each system was calculated, and
the results are shown in Fig. 5. First, we discovered that a
flat band occurs around the Fermi level (EF) after the ad-
sorption of O2 molecule in all systems, which primarily
from the O2 molecule. For the O2-(Fe-phosphorene),
O2-(Co-phosphorene), O2-(Ni-phosphorene), O2-(Cu-pho-
sphorene), O2-(Rh-phosphorene), O2-(Ir-phosphorene),
O2-(Ag-phosphorene), and O2-(Au-phosphorene) systems,

the channels for spin-up and spin-down split reveal the
magnetic characteristics. The O2-(Fe-phosphorene), O2-
(Ni-phosphorene), O2-(Cu-phosphorene), O2-(Ir-phosphor-
ene), O2-(Rh-phosphorene), O2-(Ag-phosphorene), and
O2-(Au-phosphorene) exhibit magnetic semiconducting
behavior, with a considerable bandgap except for the
O2-(Co-phosphorene) system, which was revealed to be
half-metallic. These results suggest that the systems have
the potential for application in phosphorene-based
spintronics.

Conclusions
We investigated the structural, electronic, and magnetic
properties of different TM-phosphorene systems. All the
adatoms were found to prefer to occupy the hollow site on
phosphorene. The considerable adsorption energy reveals
that all of the TM-phosphorene adsorption systems are ra-
ther robust, indicating that phosphorene forms strong
bonds with all 12 types of TM adatoms. Furthermore, we
found that doping with Fe, Co, and Au can result in mag-
netic semiconducting properties in monolayered phosphor-
ene, with total magnetic moments of 2, 1, and 0.96 μB,
respectively.
In addition, we also examined the properties of an O2

molecule adsorbed on the TM-phosphorene system. It
was very encouraging to find that all of the O2-(TM-pho-
sphorene) systems, except for O2-(Pd-phosphorene), dis-
play good catalytic activity for the oxidation of CO owing
to the elongation of the O–O bond. The O2-(Fe-pho-
sphorene), O2-(Ni-phosphorene), O2-(Cu-phosphorene),
O2-(Rh-phosphorene), O2-(Ag-phosphorene), O2-(Ir-pho-
sphorene), and O2-(Au-phosphorene) systems display
spin-polarized semiconducting properties with magnetic
moments of 2.00, 2.00, 1.00, 1.00, 1.14, 1.00, and 1.00 μB.
The O2-(Co-phosphorene) displays magnetic half-metallic
characteristics, with a magnetic moment of 2.00 μB.
Therefore, our results may open new possibilities for ap-
plying phosphorene in the fields of catalysis and
spintronics.
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